Script Verkavelingswijken (main script)
VITO, 2024-2025
Dit script bevat de finale methode van de verkavelingswijken. Experimenten met andere parameterwaarden zitten niet meer in deze versie.

import os
import geodynamix as gdx ## https://github.com/VITObelgium/geodynamix
import geopandas as gpd
import numpy as np
import time
import pandas as pd
import psycopg2
from utils import upload_shapefile_to_table
from osgeo import ogr
from sqlalchemy import create_engine

folders
main_dir = r"P:\1910056 - Reftaak VPO\3 Werkdocumenten\Berekeningen\verkavelingswijken"
tmp_cadgis_data_dir = r"Y:_Stores\store05\Cadgis\verkavelingswijken"
sociale_huisvesting_dir = r"Y:_Stores\store05\Cadgis\sociale_huisvesting"
qgis_bin_folder ="\"C:/Program Files/QGIS 3.28.15/apps/Python39/Scripts\""
os.chdir(main_dir)

settings algemeen
jaar = 2022
stats_jaar_list = ['2013', '2016', '2019', '2022']
verschil_jaren = [2013, 2022]
klv_versie = "v3" ## versie van de KLV typologie (kernen-linten-verspreid)
methode = 25 ## methode 25 is de finale methode 2022
versie = 1 ## gebruikt als finaal versienummer (methode 25 --> versie 1)
output_versie = 2 ## voor extra output cfr sociale huisvesting
expshr_size = 30 ## expshr om bebouwd en wegen dicht te smeren tussen de betrokken percelen (straal 30 m)
cluster_size = 500 ## minimale clustergrootte in are (aantal 10 m-cellen)
rel_in_cluster = 0.25 ## aandeel in cluster dat volledig aan de voorwaarden voor verkavelingspercelen voldoet
gaten_cluster_size = 500 ## max. grootte op te vullen gaten in are (aantal 10 m-cellen)
gaten_interval = 50 ## grote gaten worden niet opgevuld als dit nodig is om aan de voorwaarden van rel_in_cluster te voldoen
 ## --> (deze parameter in are test opvulling vanaf 50a, vervolgens 100a, ..., tot aan gaten_cluster_size)
rel_in_cluster_wodrempel = 0.5 ## aandeel in cluster dat aan voorwaarden moet voldoen, incl. gesloten woningen
reductie_size_achteraf = 30 ## omgekeerde expand-shrink (reductie) om smalle verbindingen in clusters te verwijderen (in m)

settings Postgresql databank (Postgis)
if int(jaar) >= 2022:
 SCHEMA = f"v{jaar}_input_methoded"
 SCHEMA_GEN = f"v{jaar}_gen_methoded"
 SCHEMA_OUT = f"v{jaar}_output_methoded"
pw = input("Enter DB password: ")
DB = {
 "server": "kaartenbak.marvin.vito.local",
 "db": f"rdm_landgebruikskaart_{jaar}",
 "port": "5432",
 "user": "crolst",
 "pw": pw
}

input data
basisdata
VL10_tif = r"E:\Landgebruikskaart_2022\verwerking\raster\methodeD\vlaanderen_geo_2019_31370.tif" ## extent Vlaanderen (10m raster)
KLV_dir = rf"E:\Landgebruikskaart_{jaar}\Indicatoren\KLV\{jaar}_{klv_versie}" ## typologie KLV kernen-linten-verspreid
bebouwde_percelen_tif = rf"E:\Landgebruikskaart_{jaar}\verwerking\raster\methodeD\niveau2_methodeD\bebouwde_percelen_{jaar}.tif" ## bebouwde percelen uit landgebruiksbestand
openbaar_domein_tif = r"E:_Projecten\OVAM_ref\Zwerfvuil\Verwerking\data_lagen\openbaar_domein.tif" ## openbaar domein: niet-gekadastreerde ruimte zonder barrières (spoorwegen en snelwegen)
bedrijf_militair_camping_shp = f"{KLV_dir}/bedrijfmilitaircamping_percelen.shp" ## uitgesloten percelen KLV-typologie: bedrijventerreinen vanaf 3 ha, militair gebied, campings/vakantieparken
ruimtebeslag_tif = rf"E:\Landgebruikskaart_{jaar}\verwerking\leveringsformaat\ruimtebeslag_{jaar}_methodeD.tif" ## indicator ruimtebeslag
verkavelingsaanvragen_shp = "Q:/2013/1310202 - Reftaak RV/3 Werkdocumenten/Gegevens/Ontvangen_20170322/verkavelingen/verk_20170217_goedgek_ntvervallen.shp" ## bestand verkavelingsaanvragen 2017
if jaar == 2022:
 synthese_tif = r"E:\ontwikkelingskansen\synthese\oplevering_v2022_2\synthesekaart_2022_10.tif" ## synthesekaart knooppuntwaarde en voorzieningsniveau
 kansenkaart_tif = r"E:_Projecten\1910056_ReftaakVPO\Kansenkaart_2022\kansenkaart_ruimtelijkrendement_v2022_rbsl_nodata20.tif" ## kansenkaart ruimtelijk rendement voor gemengde omgevingen
 wegen_shp = r"L:\Flanders\Wegenregister\2022\Wegenregister_SHAPE_20221216\Wegenregister_SHAPE_20221216\Shapefile\Wegsegment.shp" ## wegenregister
 jaarbak_filename = r"Y:\Unit_RMA\GIS\Flanders\Bodemafdekkingskaart\JaarBAK\lc_jaarbak_5m_2022_temp.tiff" ## jaarBAK 5m
openbaar_str = "openbaar"
data gedownload uit DSI op 01/12/2024: BPA en RUP's
bpa_gpkg = "DSI_BPA.gpkg"
rup_gemeentelijk_gpkg = "DSI_RUP_gemeentelijk.gpkg"
rup_gewestelijk_gpkg = "DSI_RUP_gewestelijk.gpkg"
rup_provinciaal_gpkg = "DSI_RUP_provinciaal.gpkg"
tussenresultaten van Cadgis-lagen (confidentiële data) die verwerkt zijn in preprocessing scripts
cadgis_verkavelingswijken_gpkg = f"{tmp_cadgis_data_dir}/bebouwde_percelen_info_verkavelingswijken_{jaar}.gpkg" # gemaakt met git cadgis/data_verkavelingswijken.py
cadgis_verkavelingsleeftijden_gpkg = f"{tmp_cadgis_data_dir}/bebouwde_percelen_info_verkavelingsleeftijden_{jaar}.gpkg" # gemaakt met git cadgis/data_verkavelingswijken.py
cadgis_bouwjaar_gpkg = f"{tmp_cadgis_data_dir}/huizen_geschat_bouwjaar_{jaar}.gpkg" # gemaakt met git cadgis/data_verkavelingswijken.py; bevat ook aantal woongelegenheden van huizen
cadgis_app_gpkg = f"{tmp_cadgis_data_dir}/woongelegenheden_app_{jaar}.gpkg" # gemaakt met git cadgis/data_verkavelingswijken.py; bevat aantal woongelegenheden van appartementen
cadgis_renovatie_gpkg = f"{tmp_cadgis_data_dir}/centroid_renovatie_huizen_21ste_eeuw_{jaar}.gpkg" # gemaakt met git cadgis/data_verkavelingswijken.py
cadgis_bt_vt_gpkg = f"{tmp_cadgis_data_dir}/verkavelingspercelen_bt_vt{jaar}.gpkg" # gemaakt met git cadgis/data_verkavelingswijken.py
cadgis_huizen_sociaal_gpkg = f"{sociale_huisvesting_dir}/huizen_geschat_bouwjaar_sociaal_{jaar}.gpkg" # gemaakt met git cadgis/data_sociale_huisvesting.py; bevat aantal woongelegenheden van huizen
cadgis_app_sociaal_gpkg = f"{sociale_huisvesting_dir}/woongelegenheden_app_sociaal_{jaar}.gpkg" # gemaakt met git cadgis/data_sociale_huisvesting.py; bevat aantal woongelegenheden van appartementen
tussenresultaten preprocessing script bevolking/inwoners_per_leeftijd.py --> combinatie indicator inwonersdichtheid met leeftijden per statistische sector
inwoners_leeftijd_dir = r"E:\Landgebruikskaart_2022\Indicatoren\Inwoners\per_leeftijd"
leeftijd_array = ['0_4', '5_9', '10_14', '15_19', '20_24', '25_29', '30_34', '35_39', '40_44', '45_49',
 '50_54', '55_59', '60_64', '65_69', '70_74', '75_79', '80_84', '85_89', '90_94', '95_plus'] ## leeftijden per 5 jaar

output bestanden
verkavelingswijken_cluster_tif = f"won_6789_clusters_id{methode}_{jaar}.tif"
output_excel = 'cluster_stats.xls'
output_excel_transpose = 'cluster_stats_transpose.xls'

def rasterize(shp, tif, res=10, sql="", field="-burn 1 -at", ot="Byte", layer="", whereclause=None):
verrasteren met gdal_rasterize
 extent = '-te 22000 153000 259000 245000'
 co = "-co COMPRESS=LZW"
 epsg = "-a_srs EPSG:31370"
 cmd = f'''gdal_rasterize -q {layer} {field} -tr {res} {res} {extent} -ot {ot} {co} {epsg} {sql} "{shp}" {tif}'''
 if whereclause is not None:
 cmd += f" -where \"{whereclause}\""
 print(cmd)
 os.system(cmd)

def generalise(inputRstFile, outputRstFile, res, resamplingMethod="mode", ot="float64"):
veranderen van resolutie met gdalwarp
 extent = '-te 22000 153000 259000 245000'
 options = f'-overwrite -tr {res} {res} {extent} -co COMPRESS=LZW -r {resamplingMethod} -ot {ot} -s_SRS EPSG:31370 -t_SRS EPSG:31370'
 args = 'gdalwarp ' + options + ' "' + inputRstFile + '" "' + outputRstFile + '"'
 print(args)
 os.system(args)

def polygonize(tif, shp, eight_connectedness=False):
van raster naar vector met QGIS gdal_polygonize
 if os.path.exists(shp):
 raise Exception(f"Shapefile {shp} already exists and cannot be automatically overwritten.")
 if eight_connectedness:
 eight_option = "-8 "
 else:
 eight_option = ""
 cmd = f'python {qgis_bin_folder}/gdal_polygonize.py {eight_option}{tif} {shp}'
 print(cmd)
 os.system(cmd)

def expandshrink(inputRst, radius):
expandshrink op binaire rasterkaart "inputRst" met straal "radius" in meter
 expand = gdx.sum_in_buffer(gdx.sum_in_buffer(inputRst, radius) != 0, radius)
 maxExpand = gdx.raster_max(gdx.sum_in_buffer(gdx.raster(inputRst.metadata, fill=1), radius))
 expshrink = expand >= maxExpand
 return expshrink

def verraster_info_verkavelingswijken():
inputdata en tussenresultaten verrasteren en combineren
 rasterize(cadgis_verkavelingswijken_gpkg, f"open_halfopen_woningen_60708090_{jaar}.tif", field="-burn 1", layer="-l info_wijken",
 whereclause=''' huizen_halfopen_open = 1 AND jaren_60_70_80_90 = 1 AND bevat_wooneenheden = 1 ''')
 rasterize(cadgis_verkavelingswijken_gpkg, f"gesloten_woningen_60708090_{jaar}.tif", field="-burn 1", layer="-l info_wijken",
 whereclause=''' huizen_gesloten = 1 AND jaren_60_70_80_90 = 1 AND bevat_wooneenheden = 1 ''')
 rasterize(bedrijf_militair_camping_shp, f"bedrijf_militair_camping_{jaar}.tif", field="-burn 1")
 lu_special = gdx.read(f"bedrijf_militair_camping_{jaar}.tif")
 ohowo60708090 = gdx.read(f"open_halfopen_woningen_60708090_{jaar}.tif")
 ohowo60708090 = gdx.logical_and(ohowo60708090, gdx.logical_not(lu_special))
 gdx.write(ohowo60708090, f"open_halfopen_woningen_60708090_{jaar}.tif")
 geslwo60708090 = gdx.read(f"gesloten_woningen_60708090_{jaar}.tif")
 geslwo60708090 = gdx.logical_and(geslwo60708090, gdx.logical_not(lu_special))
 gdx.write(geslwo60708090, f"gesloten_woningen_60708090_{jaar}.tif")
 wo60708090 = gdx.logical_or(ohowo60708090, geslwo60708090)
 gdx.write(wo60708090, f"woningen_60708090_{jaar}.tif")

 rasterize(bpa_gpkg, "bpa.tif", field="-burn 1")
 rasterize(rup_gemeentelijk_gpkg, "rup_gemeentelijk.tif", field="-burn 1")
 rasterize(rup_gewestelijk_gpkg, "rup_gewestelijk.tif", field="-burn 1")
 rasterize(rup_provinciaal_gpkg, "rup_provinciaal.tif", field="-burn 1")
 rup_gemeentelijk = gdx.read("rup_gemeentelijk.tif")
 rup_gemeentelijk.replace_nodata(0)
 rup_gewestelijk = gdx.read("rup_gewestelijk.tif")
 rup_gewestelijk.replace_nodata(0)
 rup_provinciaal = gdx.read("rup_provinciaal.tif")
 rup_provinciaal.replace_nodata(0)
 rup = gdx.logical_or(rup_gemeentelijk, rup_provinciaal, rup_gewestelijk)
 gdx.write(rup, "rup.tif")

 rasterize(wegen_shp, "hoofdwegen.tif", field="-burn 1 -at", whereclause = ''' wegcat <> '-8' and wegcat <> '-9' and wegcat <> 'H' and wegcat <> 'L3' and wegcat <> 'L2' ''')
 hoofdwegen = gdx.read_as('B', "hoofdwegen.tif")
 openbaar_domein = gdx.read(openbaar_domein_tif)
 openbaar_domein.set_projection(31370)
 openbaar_domein.replace_nodata(0)
 hoofdwegen = gdx.logical_and(openbaar_domein, gdx.distance(hoofdwegen) <= 20)
 gdx.write(hoofdwegen, "hoofdwegen_buffer.tif")
 openbaar_domein_zonder_hoofdwegen = gdx.logical_and(openbaar_domein, gdx.distance(hoofdwegen) > 20)
 gdx.write(openbaar_domein_zonder_hoofdwegen, "openbaar_domein_zonder_hoofdwegen.tif")

 leeftijden_gdf = gpd.read_file(cadgis_verkavelingsleeftijden_gpkg)
 leeftijden_gdf.geometry = leeftijden_gdf['geometry'].centroid
 leeftijden_gdf.to_file(f'{cadgis_verkavelingsleeftijden_gpkg[:-5]}_centroid.shp')
 rasterize(f'{cadgis_verkavelingsleeftijden_gpkg[:-5]}_centroid.shp', 'centroid_huis.tif', field="-burn 1")
 rasterize(f'{cadgis_verkavelingsleeftijden_gpkg[:-5]}_centroid.shp', 'centroid_huis_oud.tif', field="-burn 1", whereclause=''' ouder_dan_ = 1 ''')
 for i in range(5, 10):
 rasterize(f'{cadgis_verkavelingsleeftijden_gpkg[:-5]}_centroid.shp', f'centroid_huis_{i}0.tif', field="-burn 1", whereclause=f''' jaren_{i}0 = 1 ''')
 rasterize(f'{cadgis_verkavelingsleeftijden_gpkg[:-5]}_centroid.shp', 'centroid_huis_21ste_eeuw.tif', field="-burn 1", whereclause=''' vanaf_2000 = 1 ''')
 rasterize(cadgis_renovatie_gpkg, 'centroid_renovatie_21ste_eeuw.tif', field="-burn 1", layer="-l renovatie", whereclause=''' renov21e = 1 ''')

 bouwjaar_gdf = gpd.read_file(cadgis_bouwjaar_gpkg)
 bouwjaar_gdf.rename(columns={"geschat_bouwjaar": "bouwjaar", "aantal_wooneenheden": "woningen"}, inplace=True)
 bouwjaar_gdf["area_m2"] = bouwjaar_gdf.geometry.area
 bouwjaar_gdf.geometry = bouwjaar_gdf['geometry'].centroid
 bouwjaar_gdf.to_file(f'{cadgis_bouwjaar_gpkg[:-5]}_centroid.shp')
 rasterize(f'{cadgis_bouwjaar_gpkg[:-5]}_centroid.shp', f'centroid_bouwjaar_{jaar}.tif', field="-a bouwjaar", ot="int32")
 rasterize(f'{cadgis_bouwjaar_gpkg[:-5]}_centroid.shp', f'centroid_aantal_huizen_{jaar}.tif', field="-a woningen -add", ot="int32")
 rasterize(f'{cadgis_bouwjaar_gpkg[:-5]}_centroid.shp', f'centroid_perceelsgrootte_huizen_{jaar}.tif', field="-a area_m2", ot="float32")

 app_gdf = gpd.read_file(cadgis_app_gpkg)
 app_gdf.rename(columns={"aantal_wooneenheden": "woningen"}, inplace=True)
 app_gdf.geometry = app_gdf['geometry'].centroid
 app_gdf.to_file(f'{cadgis_app_gpkg[:-5]}_centroid.shp')
 rasterize(f'{cadgis_app_gpkg[:-5]}_centroid.shp', f'centroid_aantal_app_{jaar}.tif', field="-a woningen -add", ot="int32")

 huizen = gdx.read(f'centroid_aantal_huizen_{jaar}.tif')
 huizen.replace_nodata(0)
 app = gdx.read(f'centroid_aantal_app_{jaar}.tif')
 app.replace_nodata(0)
 wooneenheden = huizen + app
 wooneenheden = gdx.if_then_else(VL10, wooneenheden, gdx.nodata)
 gdx.write(wooneenheden, f'centroid_aantal_wooneenheden_{jaar}.tif')

 rasterize(verkavelingsaanvragen_shp, "verkavelingsaanvragen.tif", field="-burn 1")

 bt_vt_gdf = gpd.read_file(cadgis_bt_vt_gpkg)
 bt_vt_gdf = bt_vt_gdf.drop(bt_vt_gdf.columns.difference(['capakey', 'bt', 'vt', 'geometry']), axis=1)
 bt_vt_gdf.geometry = bt_vt_gdf['geometry'].centroid
 bt_vt_gdf.to_file(f'{cadgis_bt_vt_gpkg[:-5]}_centroid.shp')
 rasterize(f'{cadgis_bt_vt_gpkg[:-5]}_centroid.shp', f'centroid_bt{jaar}.tif', field="-a bt", ot="float32")
 rasterize(f'{cadgis_bt_vt_gpkg[:-5]}_centroid.shp', f'centroid_vt{jaar}.tif', field="-a vt", ot="float32")

 huizen_sociaal_gdf = gpd.read_file(cadgis_huizen_sociaal_gpkg)
 huizen_sociaal_gdf.rename(columns={"geschat_bouwjaar": "bouwjaar", "aantal_wooneenheden": "woningen", "sociale_wooneenheden": "soc_won"}, inplace=True)
 huizen_sociaal_gdf.geometry = huizen_sociaal_gdf['geometry'].centroid
 huizen_sociaal_gdf.to_file(f'{cadgis_huizen_sociaal_gpkg[:-5]}_centroid.shp')
 rasterize(f'{cadgis_huizen_sociaal_gpkg[:-5]}_centroid.shp', f'centroid_aantal_huizen_sociaal_{jaar}.tif', field="-a soc_won -add", ot="int32")

 app_sociaal_gdf = gpd.read_file(cadgis_app_sociaal_gpkg)
 app_sociaal_gdf.rename(columns={"aantal_wooneenheden": "woningen", "sociale_wooneenheden": "soc_app"}, inplace=True)
 app_sociaal_gdf.geometry = app_sociaal_gdf['geometry'].centroid
 app_sociaal_gdf.to_file(f'{cadgis_app_sociaal_gpkg[:-5]}_centroid.shp')
 rasterize(f'{cadgis_app_sociaal_gpkg[:-5]}_centroid.shp', f'centroid_aantal_app_sociaal_{jaar}.tif', field="-a soc_app -add", ot="int32")

 huizen = gdx.read(f'centroid_aantal_huizen_sociaal_{jaar}.tif')
 huizen.replace_nodata(0)
 app = gdx.read(f'centroid_aantal_app_sociaal_{jaar}.tif')
 app.replace_nodata(0)
 wooneenheden = huizen + app
 wooneenheden = gdx.if_then_else(VL10, wooneenheden, gdx.nodata)
 gdx.write(wooneenheden, f'centroid_aantal_wooneenheden_sociaal_{jaar}.tif')

def maak_verkavelingswijken():
rasteralgoritme verkavelingswijken --> volledige beschrijving: zie rapport
 ohowo60708090 = gdx.read(f"open_halfopen_woningen_60708090_{jaar}.tif") ## (half)open woningen jaren 60-70-80-90
 wo60708090 = gdx.read(f"woningen_60708090_{jaar}.tif") ## alle woningen jaren 60-70-80-90
 wo_expshr = expandshrink(wo60708090, expshr_size) ## expandshrink van alle woningen
 bebouwde_percelen = gdx.read(bebouwde_percelen_tif)
 bebouwde_percelen.replace_nodata(0)

 openbaar_domein = gdx.read(openbaar_domein_tif)
 openbaar_domein.set_projection(31370)
 openbaar_domein.replace_nodata(0)
 wo_expshr_bebperc_openbaar = gdx.logical_and(wo_expshr, gdx.logical_or(bebouwde_percelen, openbaar_domein)) ## selectie expandshrink op bebouwde percelen of openbaar domein
 gdx.write(wo_expshr_bebperc_openbaar, f"won_6789_expshr{expshr_size}_bebouwd_of_{openbaar_str}_{jaar}.tif")

 wo_exp_cluster = gdx.cluster_id(wo_expshr_bebperc_openbaar) ## clusters maken
 wo_exp_clustersize = gdx.cluster_size(wo_expshr_bebperc_openbaar) ## clustergrootte berekenen
 wo_rel_in_cluster = gdx.csum(wo_exp_cluster, wo60708090) / gdx.csum(wo_exp_cluster, 1) ## aandeel woningen 60-70-80-90 in cluster
 ohowo_rel_in_wocluster = gdx.csum(wo_exp_cluster, ohowo60708090) / gdx.csum(wo_exp_cluster, 1) ## aandeel (half)open woningen 60-70-80-90 in cluster

 ## test of clusters groot genoeg zijn en aandeel van alle woningen en alle (half)open woningen 60-70-80-90 groot genoeg is --> neem daarin de selectie van de expandshrink
 boven_drempel = gdx.logical_and(wo_expshr_bebperc_openbaar, gdx.logical_and(wo_exp_clustersize >= cluster_size, ohowo_rel_in_wocluster >= rel_in_cluster, wo_rel_in_cluster >= rel_in_cluster_wodrempel))
 boven_drempel.replace_nodata(0)
 boven_drempel = gdx.if_then_else(VL10, boven_drempel, gdx.nodata) ## binnen Vlaanderen
 gdx.write(boven_drempel, f"won_6789_tussenstap_clusters{methode}_{jaar}.tif")
 geen_wo_boven_drempel = gdx.logical_not(boven_drempel) ## detectie van gaten
 geen_wo_boven_drempel_size = gdx.cluster_size(geen_wo_boven_drempel) ## grootte van de gaten
 finale_clusters = gdx.raster(boven_drempel.metadata, fill=0) ## leeg raster om hieronder finale clusters in te gaan verzamelen

 for g in range(gaten_interval, gaten_cluster_size + 1, gaten_interval): ## test welke gaten (welke grootte) opgevuld kunnen worden zodat opgevulde clusters nog aan voorwaarden voldoen
 wo_opvul = geen_wo_boven_drempel_size <= g
 clusters = gdx.logical_or(boven_drempel, gdx.if_then_else(gdx.is_nodata(wo_opvul), 0, wo_opvul))

 if reductie_size_achteraf > 0: ## toepassen reductie van smalle verbindingen
 geen_cluster = gdx.logical_not(clusters)
 mogelijke_reductie = expandshrink(geen_cluster, reductie_size_achteraf)
 clusters = gdx.logical_and(clusters, gdx.logical_not(mogelijke_reductie))
 del geen_cluster, mogelijke_reductie

 hoofdwegen = gdx.read("hoofdwegen_buffer.tif")
 clusters = gdx.logical_and(clusters, gdx.logical_not(hoofdwegen)) ## clusters splitsen op hoofdwegen

 ## opnieuw clustergroottes en aandelen woningen hierbinnen berekenen
 wo_exp_cluster = gdx.cluster_id(clusters)
 wo_exp_clustersize = gdx.cluster_size(clusters)
 wo_rel_in_cluster = gdx.csum(wo_exp_cluster, wo60708090) / gdx.csum(wo_exp_cluster, 1)
 ohowo_rel_in_wocluster = gdx.csum(wo_exp_cluster, ohowo60708090) / gdx.csum(wo_exp_cluster, 1)

 ## opnieuw testen of de clusters aan de voorwaarden voldoen voor elke grootte om gaten op te vullen
 boven_drempel_g = gdx.logical_and(clusters, gdx.logical_and(wo_exp_clustersize >= cluster_size, ohowo_rel_in_wocluster >= rel_in_cluster, wo_rel_in_cluster >= rel_in_cluster_wodrempel))
 boven_drempel_g.replace_nodata(0)
 boven_drempel_g = gdx.if_then_else(VL10, boven_drempel_g, gdx.nodata)
 finale_clusters = gdx.logical_or(finale_clusters, boven_drempel_g) ## toevoegen van clusters die OK zijn

 finale_clusters = gdx.if_then_else(VL10, finale_clusters, gdx.nodata) ## binnen Vlaanderen
 gdx.write(finale_clusters, f"won_6789_clusters{methode}_{jaar}.tif")
 finale_clusters_id = gdx.cluster_id(finale_clusters) ## ID geven aan de clusters
 gdx.write(finale_clusters_id, verkavelingswijken_cluster_tif)

def paars_gebied():
"paars gebied" = hoge knooppuntwaarde en hoog voorzieningsniveau
 synthese = gdx.read(synthese_tif)
 paars = gdx.raster_equal_one_of(synthese, [11,12,15,16])
 gdx.write(paars, f"paars_gebied_{jaar}.tif")

def statistieken_per_cluster(verkavelingswijkcluster_tif, score_tif, output_tif=None, gem_tif=None, per_ha=False, tov_puntdata=False, som_tif=None, som_factor=1, gem_tov_puntlaag=None, median_tif=None, write_tifs=True):
berekenen van statistieken uit rasterkaart "score_tif" per cluster
 verkavelingswijk_cluster = gdx.read(verkavelingswijkcluster_tif)
 score = gdx.read(score_tif)
 score.replace_nodata(0)
 if write_tifs and output_tif is not None: ## score binnen cluster wegschrijven
 resultaat = gdx.if_then_else(verkavelingswijk_cluster, score, 0)
 resultaat.replace_nodata(0)
 resultaat = gdx.if_then_else(VL10, resultaat, gdx.nodata)
 gdx.write(resultaat, output_tif)
 if write_tifs and (gem_tif is not None or som_tif is not None):
 sum_score = gdx.csum(verkavelingswijk_cluster, score) ## som van score in cluster berekenen (voor som-statistiek of gem-statistiek)
 if gem_tif is not None: ## gemiddelde per cluster
 if write_tifs and tov_puntdata: ## gem tov puntdata zelf: tellen waar puntdata zitten
 score_aanwezig = score > 0
 opp_cluster = gdx.csum(verkavelingswijk_cluster, score_aanwezig)
 elif gem_tov_puntlaag is not None: ## gem tov andere puntlaag
 puntlaag = gdx.read(gem_tov_puntlaag)
 puntlaag.replace_nodata(0)
 if write_tifs:
 opp_cluster = gdx.csum(verkavelingswijk_cluster, puntlaag) ## tellen waar andere puntlaag zit
 elif write_tifs:
 opp_cluster = gdx.csum(verkavelingswijk_cluster, 1) ## tov opp. van de volledige cluster
 if write_tifs:
 gem_score = sum_score / opp_cluster
 gem_score.replace_nodata(0)
 if per_ha: ## gem per ha
 if write_tifs:
 gem_score = 100 * gem_score
 ## gemiddeldes voor heel VL wegschrijven naar output van het Python script
 print(f"gemid {score_tif} in VL: {100 * gdx.raster_sum(gdx.if_then_else(verkavelingswijk_cluster, score, 0)) / gdx.raster_sum(gdx.if_then_else(verkavelingswijk_cluster, 1, 0))} per ha")
 elif tov_puntdata: ## tov puntdata in de score zelf
 print(f"gemid {score_tif} in VL: {gdx.raster_sum(gdx.if_then_else(verkavelingswijk_cluster, score, 0)) / gdx.raster_sum(gdx.if_then_else(gdx.logical_and(verkavelingswijk_cluster, score > 0), 1, 0))}")
 elif gem_tov_puntlaag is not None: ## tov andere puntdata
 print(f"gemid {score_tif} in VL: {gdx.raster_sum(gdx.if_then_else(verkavelingswijk_cluster, score, 0)) / gdx.raster_sum(gdx.if_then_else(gdx.logical_and(verkavelingswijk_cluster, puntlaag > 0), 1, 0))}")
 else: ## gemiddelde in de hele cluster
 print(f"gemid {score_tif} in VL: {gdx.raster_sum(gdx.if_then_else(verkavelingswijk_cluster, score, 0)) / gdx.raster_sum(gdx.if_then_else(verkavelingswijk_cluster, 1, 0))} ")
 if write_tifs:
 gem_score = gdx.if_then_else(VL10, gem_score, gdx.nodata)
 gdx.write(gem_score, gem_tif)
 if som_tif is not None: ## som per cluster
 if write_tifs:
 sum_score.replace_nodata(0)
 if som_factor != 1:
 print(f"som {score_tif} in VL: {som_factor * gdx.raster_sum(gdx.if_then_else(verkavelingswijk_cluster, score, 0))} ")
 if write_tifs:
 sum_score = sum_score.astype('float32')
 sum_score = som_factor * sum_score
 else:
 print(f"som {score_tif} in VL: {gdx.raster_sum(gdx.if_then_else(verkavelingswijk_cluster, score, 0))} ")
 if write_tifs:
 sum_score = gdx.if_then_else(VL10, sum_score, gdx.nodata)
 gdx.write(sum_score, som_tif)
 if write_tifs and median_tif is not None: ## mediaan per cluster
 aantal_clusters = gdx.raster_max(verkavelingswijk_cluster)
 print(f"Time {time.time()} - Er zijn {aantal_clusters} clusters.")
 medianArray = np.where(verkavelingswijk_cluster.array > 0, 1, np.nan)
 for i in range(1, aantal_clusters + 1):
 if i % 50 == 0:
 print(f"Time {time.time()} - Mediaan voor cluster {i} ")
 zoneArray = np.where(verkavelingswijk_cluster.array == i, 1, np.nan)
 indArray = np.where(zoneArray == 1, score.array, np.nan)
 medianArray = np.where(zoneArray == 1, np.nanmedian(indArray), medianArray)
 median_rst = gdx.raster_from_ndarray(medianArray, verkavelingswijk_cluster.metadata)
 gdx.write(median_rst, median_tif)

def evolutiekaarten(jaar1_tif, jaar2_tif, evolutie_tif):
verhouding jaar2 t.o.v. jaar1
 jaar1 = gdx.read(jaar1_tif)
 jaar2 = gdx.read(jaar2_tif)
 evolutie = gdx.if_then_else(jaar1 > 0, jaar2 / jaar1, gdx.nodata)
 gdx.write(evolutie, evolutie_tif)

def gemiddelde_leeftijd(verkavelingswijkcluster_tif, inwoners_tif, gem_leeftijd_per_cluster_tif):
gemiddelde leeftijd inwoners cluster (a.d.h.v. leeftijdsverdeling per statistische sector en inwonersdichtheid)
 verkavelingswijk_cluster = gdx.read(verkavelingswijkcluster_tif)
 inwoners = gdx.read(inwoners_tif)
 inwoners.replace_nodata(0.0)
 gem_leeftijd = gdx.raster(VL10.metadata, fill=0.0, dtype="float64")
 for a in leeftijd_array:
 inw_l = gdx.read(f'{inwoners_leeftijd_dir}/inwoners_leeftijd_{a}_10m.tif')
 inw_l.replace_nodata(0.0)
 sum_score = gdx.csum(verkavelingswijk_cluster, inw_l)
 if a in leeftijd_array[:2]:
 leeftijd = (float(a[0]) + float(a[-1])) / 2.0
 elif a != leeftijd_array[-1]:
 leeftijd = (float(a[:2]) + float(a[-2:])) / 2.0
 else:
 leeftijd = 98.0
 gem_leeftijd = gem_leeftijd + float(leeftijd) * sum_score
 inwoners_per_cluster = gdx.csum(verkavelingswijk_cluster, inwoners)
 gem_leeftijd = gem_leeftijd / inwoners_per_cluster
 gem_leeftijd = gdx.if_then_else(VL10, gem_leeftijd, gdx.nodata)
 gdx.write(gem_leeftijd, gem_leeftijd_per_cluster_tif)

def leeftijd_per_10_jaar(verkavelingswijkcluster_tif, inwoners_tif):
percentages leeftijdsklasse van 10 jaar in clusters
 verkavelingswijk_cluster = gdx.read(verkavelingswijkcluster_tif)
 inwoners = gdx.read(inwoners_tif)
 inwoners.replace_nodata(0.0)
 inwoners_per_cluster = gdx.csum(verkavelingswijk_cluster, inwoners)
 for i,a in enumerate(leeftijd_array):
 if i % 2 == 0:
 inw_l1 = gdx.read(f'{inwoners_leeftijd_dir}/inwoners_leeftijd_{a}_10m.tif')
 inw_l1.replace_nodata(0.0)
 inw_l2 = gdx.read(f'{inwoners_leeftijd_dir}/inwoners_leeftijd_{leeftijd_array[i+1]}_10m.tif')
 inw_l2.replace_nodata(0.0)
 inw_l = inw_l1 + inw_l2
 sum_score_l = gdx.csum(verkavelingswijk_cluster, inw_l)
 perc_score_l = sum_score_l / inwoners_per_cluster
 perc_score_l = 100.0 * perc_score_l
 perc_score_l = gdx.if_then_else(VL10, perc_score_l, gdx.nodata)
 if i == 0:
 gdx.write(perc_score_l, f"clusters_{methode}_perc_leeftijd_{jaar}_0_9.tif")
 else:
 gdx.write(perc_score_l, f"clusters_{methode}_perc_leeftijd_{jaar}_{a[:2]}_{leeftijd_array[i+1][3:]}.tif")

def prepare_jaarbak():
jaarBAK naar resolutie 10 m
 generalise(jaarbak_filename, "jaarbak_2022_10m.tif", res=10, resamplingMethod="average", ot="float32")

def aanwezig_in_cluster(clustersFile, inputFile, inputNaam, ExcelFile, append=True):
statistieken van clusters samenvatten in Excel
 clusters = gdx.read_as("int32", clustersFile)
 valueRst = gdx.read_as('float32', inputFile)
 clusters_fl = clusters.astype('float32')
 gdx.table_row(ExcelFile, valueRst, clusters_fl, gdx.operation.average, inputNaam, append)

def goed_gelegen_rr(verkavelingswijk_clusters, rr_mediaan_clusters, rr_min, rr_max, verkavelingswijk_goed_gelegen_clusters):
afbakenen van clusters met hoog ruimtelijk rendement
 clusters = gdx.read(verkavelingswijk_clusters)
 rr_mediaan = gdx.read(rr_mediaan_clusters)
 clusters_goed_gelegen = gdx.if_then_else(gdx.logical_and(rr_mediaan > rr_min, rr_mediaan <= rr_max), clusters, 0)
 gdx.write(clusters_goed_gelegen, verkavelingswijk_goed_gelegen_clusters)

def opkuis_excel(transpose_xlsx, stats_xlsx):
data afronden in Excel
 df = pd.read_excel(transpose_xlsx)
 for col in df.columns:
 if ((col[:4] == 'inw_' or col[:3] == 'hh_') and col[-2:] != 'ha') or col == 'huizen' or col == 'app' or col == 'won' or col == 'gem_bouwjr' or col == 'g_leeftijd' or col == 'perceel_m2':
 df[col] = df[col].round(0)
 elif col[:2] == 'a_':
 df[col] = df[col].round(4)
 elif col == 'cluster_id':
 continue
 else:
 df[col] = df[col].round(2)
 df.to_excel(stats_xlsx, index=False)

def maak_gpkg(clusters_shp, stats_xlsx, output_gpkg):
toevoegen van statistieken aan de file met clusters
 gdf = gpd.read_file(clusters_shp)
 gdf = gdf[gdf["DN"] != 0]
 gdf.rename(columns = {'DN': 'cluster_id'}, inplace=True)
 df = pd.read_excel(stats_xlsx)
 gdf = pd.merge(gdf, df, on='cluster_id', copy=False)
 for col in gdf.columns: ## aandeel naar percentage
 if col[:2] == 'a_':
 gdf[col] = 100.0 * gdf[col]
 gdf.rename(columns = {col: f'p{col[1:]}'}, inplace=True)
 for col in gdf.columns:
 if ((col[:4] == 'inw_' or col[:3] == 'hh') and col[-2:] != 'ha') or col == 'huizen' or col == 'app' or col == 'won' or col == 'gem_bouwjr' or col == 'g_leeftijd' or col == 'perceel_m2' or col == 'cluster_id' or col == 'geometry':
 continue
 else:
 gdf[col] = gdf[col].round(2)
 gdf.to_file(output_gpkg, layer='verkavelingswijken', driver='GPKG')

def goed_gelegen_gpkg(output_gpkg, output_xlsx_extra, goed_gelegen_gpkg):
selecteren van goed gelegen clusters + berekenen van mogelijk aantal extra woningen (als nu < 15 won/ha)
 gdf = gpd.read_file(output_gpkg, layer='verkavelingswijken', driver='GPKG')
 gdf["extra_won"] = gdf["opp_ha"] * (15.0 - gdf["won_ha"])
 gdf.loc[(gdf['med_rr'] <= 50) | (gdf["won_ha"] > 15.0), "extra_won"] = 0.0
 gdf["extra_won"] = gdf["extra_won"].round()
 df = gdf.drop(["geometry"], axis=1)
 df.to_excel(output_xlsx_extra, index=False)
 gdf = gdf[gdf['med_rr'] > 50]
 gdf.to_file(goed_gelegen_gpkg, layer='goed_gelegen_verkavelingswijken', driver='GPKG')
 gdf.to_file(f"{goed_gelegen_gpkg[:-5]}.shp")

def per_gemeente(conn, goed_gelegen_gpkg, gemeente_xlsx):
berekenen van statistieken per gemeente in Postgis
 cur = conn.cursor()

 upload_shapefile_to_table(DB, SCHEMA, "verkavelingswijken_clusters", f"{goed_gelegen_gpkg[:-5]}.shp", ogr.wkbMultiPolygon25D)
 cur.execute('CREATE INDEX ON ' + SCHEMA + '.verkavelingswijken_clusters using gist(geom);')

 print('stap 2')
 cur.execute('drop table if exists ' + SCHEMA_GEN + '.verkavelingswijken_gemeente;')
 cur.execute('create table ' + SCHEMA_GEN + f'''.verkavelingswijken_gemeente as
 select a.*, g.NISCODE, g.NAAM as gemeente,
 st_area(st_intersection(a.geom, g.geom)) / 10000 as opp_ha_gem,
 st_area(st_intersection(a.geom, g.geom)) / (10000 * opp_ha) as rel_opp_gem
 from {SCHEMA}.verkavelingswijken_clusters a
 inner join {SCHEMA}.gemeenten g
 on st_intersects(a.geom, g.geom);''')

 print('stap 3')
 cur.execute('drop table if exists ' + SCHEMA_GEN + '.verkavelingswijken_per_gemeente;')
 cur.execute('create table ' + SCHEMA_GEN + f'''.verkavelingswijken_per_gemeente as
 select NISCODE, gemeente, sum(opp_ha_gem) as opp_ha,
 sum(huizen * rel_opp_gem) as huizen,
 sum(app * rel_opp_gem) as app,
 sum(won * rel_opp_gem) as won,
 sum(opp_ha_gem * huizen_ha) / sum(opp_ha_gem) as huizen_ha,
 sum(opp_ha_gem * app_ha) / sum(opp_ha_gem) as app_ha,
 sum(opp_ha_gem * won_ha) / sum(opp_ha_gem) as won_ha,
 sum(extra_won * rel_opp_gem) as extra_won
 from {SCHEMA_GEN}.verkavelingswijken_gemeente
 group by NISCODE, gemeente;''')

 df = pd.read_sql(f"select * from {SCHEMA_GEN}.verkavelingswijken_per_gemeente", engine)
 for col in ['huizen', 'app', 'won', 'extra_won']:
 df[col] = df[col].round(0)
 for col in ['opp_ha', 'huizen_ha', 'app_ha', 'won_ha']:
 df[col] = df[col].round(2)
 df.to_excel(gemeente_xlsx, index=False)

if __name__ == "__main__":
 VL10 = gdx.read(VL10_tif) ## extent Vlaanderen

 ## preprocessing
 verraster_info_verkavelingswijken()
 prepare_jaarbak()
 paars_gebied()

 ## rasteralgoritme clusters + omzetting in vector
 maak_verkavelingswijken()
 polygonize(verkavelingswijken_cluster_tif, f"won_6789_clusters_id{methode}_{jaar}.shp")

 ## rasterkaarten per cluster van allerlei statistieken uit inputdata of uit tussenresultaten van verraster_info_verkavelingswijken()
 statistieken_per_cluster(verkavelingswijken_cluster_tif, VL10_tif, som_tif=f"clusters{methode}_opp_ha.tif", som_factor=0.01) ## oppervlakte in ha
 statistieken_per_cluster(verkavelingswijken_cluster_tif, f"paars_gebied_{jaar}.tif", f"won_6789_clusters{methode}_paars_{jaar}.tif",
 f"won_6789_clusters{methode}_paars_gem_{jaar}.tif") ## paars gebied
 statistieken_per_cluster(verkavelingswijken_cluster_tif, "verkavelingsaanvragen.tif", gem_tif=f"won_6789_clusters{methode}_verkavelingsaanvragen_gem_{jaar}.tif")
 statistieken_per_cluster(verkavelingswijken_cluster_tif, "bpa.tif", gem_tif=f"won_6789_clusters{methode}_bpa_gem_{jaar}.tif")
 statistieken_per_cluster(verkavelingswijken_cluster_tif, "rup.tif", gem_tif=f"won_6789_clusters{methode}_rup_gem_{jaar}.tif")
 statistieken_per_cluster(verkavelingswijken_cluster_tif, kansenkaart_tif, f"won_6789_clusters{methode}_kansRR_{jaar}.tif",
 f"won_6789_clusters{methode}_kansRRgem_{jaar}.tif",
 median_tif=f"won_6789_clusters{methode}_kansRRmediaan_{jaar}.tif") ## ruimtelijk rendement (gemiddelde en mediaan)
 for stats_jaar in stats_jaar_list:
 inwoners_tif = rf"E:\Landgebruikskaart_{stats_jaar}\Indicatoren\Inwoners\inwoners_{stats_jaar}_10m_verbeterd.tif" ## inwonersdichtheid
 huishoudens_tif = rf"E:\Landgebruikskaart_{stats_jaar}\Indicatoren\Huishoudens\huishoudens_{stats_jaar}_10m_verbeterd.tif" ## huishoudensdichtheid
 statistieken_per_cluster(verkavelingswijken_cluster_tif, inwoners_tif,
 gem_tif=f"clusters{methode}_inwoners{stats_jaar}_per_ha.tif",
 som_tif=f"clusters{methode}_inwoners{stats_jaar}_som.tif", per_ha=True)
 statistieken_per_cluster(verkavelingswijken_cluster_tif, huishoudens_tif,
 gem_tif=f"clusters{methode}_huishoudens{stats_jaar}_per_ha.tif",
 som_tif=f"clusters{methode}_huishoudens{stats_jaar}_som.tif", per_ha=True)
 statistieken_per_cluster(verkavelingswijken_cluster_tif, f'centroid_aantal_huizen_{jaar}.tif',
 gem_tif=f"clusters{methode}_aantal_huizen{jaar}_per_ha.tif",
 som_tif=f"clusters{methode}_aantal_huizen{jaar}_som.tif", per_ha=True)
 statistieken_per_cluster(verkavelingswijken_cluster_tif, f'centroid_aantal_app_{jaar}.tif',
 gem_tif=f"clusters{methode}_aantal_app{jaar}_per_ha.tif",
 som_tif=f"clusters{methode}_aantal_app{jaar}_som.tif", per_ha=True)
 statistieken_per_cluster(verkavelingswijken_cluster_tif, f'centroid_aantal_wooneenheden_{jaar}.tif',
 gem_tif=f"clusters{methode}_aantal_wooneenheden{jaar}_per_ha.tif", som_tif=f"clusters{methode}_aantal_wooneenheden{jaar}_som.tif", per_ha=True)
 statistieken_per_cluster(verkavelingswijken_cluster_tif, f'centroid_bouwjaar_{jaar}.tif', gem_tif=f"clusters{methode}_bouwjaar{jaar}.tif", tov_puntdata=True) ## gemiddeld bouwjaar
 statistieken_per_cluster(verkavelingswijken_cluster_tif, "jaarbak_2022_10m.tif", gem_tif=f"clusters{methode}_verharding{jaar}.tif")
 statistieken_per_cluster(verkavelingswijken_cluster_tif, ruimtebeslag_tif, gem_tif=f"clusters{methode}_ruimtebeslag{jaar}.tif")
 statistieken_per_cluster(verkavelingswijken_cluster_tif, f'centroid_perceelsgrootte_huizen_{jaar}.tif',
 gem_tif=f"clusters{methode}_perceelsgrootte{jaar}.tif", tov_puntdata=True) ## gemiddelde perceelsgrootte
 statistieken_per_cluster(verkavelingswijken_cluster_tif, 'centroid_huis_oud.tif', gem_tif=f'clusters{methode}_aandeel_huizen_ouder_dan_50.tif',
 gem_tov_puntlaag="centroid_huis.tif")
 for i in range(5, 10):
 statistieken_per_cluster(verkavelingswijken_cluster_tif, f'centroid_huis_{i}0.tif', gem_tif=f'clusters{methode}_aandeel_huizen_jaren_{i}0.tif',
 gem_tov_puntlaag="centroid_huis.tif") ## aandeel jaren 50 tot jaren 90 per decennium
 statistieken_per_cluster(verkavelingswijken_cluster_tif, 'centroid_huis_21ste_eeuw.tif', gem_tif=f'clusters{methode}_aandeel_huizen_21ste_eeuw.tif',
 gem_tov_puntlaag="centroid_huis.tif")
 statistieken_per_cluster(verkavelingswijken_cluster_tif, 'centroid_renovatie_21ste_eeuw.tif', gem_tif=f'clusters{methode}_aandeel_renovatie_21ste_eeuw.tif',
 gem_tov_puntlaag="centroid_huis.tif")
 statistieken_per_cluster(verkavelingswijken_cluster_tif, f'centroid_bt{jaar}.tif',
 gem_tif=f"clusters{methode}_bt{jaar}.tif", gem_tov_puntlaag="centroid_huis.tif") ## B/T (aandeel bebouwd)
 statistieken_per_cluster(verkavelingswijken_cluster_tif, f'centroid_vt{jaar}.tif',
 gem_tif=f"clusters{methode}_vt{jaar}.tif", gem_tov_puntlaag="centroid_huis.tif") ## V/T (vloeropp per terreinopp)
 statistieken_per_cluster(verkavelingswijken_cluster_tif, f'centroid_aantal_huizen_sociaal_{jaar}.tif', gem_tif=f"clusters{methode}_aantal_huizen_sociaal{jaar}_per_ha.tif",
 som_tif=f"clusters{methode}_aantal_huizen_sociaal{jaar}_som.tif", per_ha=True)
 statistieken_per_cluster(verkavelingswijken_cluster_tif, f'centroid_aantal_app_sociaal_{jaar}.tif', gem_tif=f"clusters{methode}_aantal_app_sociaal{jaar}_per_ha.tif",
 som_tif=f"clusters{methode}_aantal_app_sociaal{jaar}_som.tif", per_ha=True)
 statistieken_per_cluster(verkavelingswijken_cluster_tif, f'centroid_aantal_wooneenheden_sociaal_{jaar}.tif', gem_tif=f"clusters{methode}_aantal_wooneenheden_sociaal{jaar}_per_ha.tif",
 som_tif=f"clusters{methode}_aantal_wooneenheden_sociaal{jaar}_som.tif", per_ha=True)

 evolutiekaarten(f"clusters{methode}_inwoners{verschil_jaren[0]}_per_ha.tif",
 f"clusters{methode}_inwoners{verschil_jaren[1]}_per_ha.tif",
 f"clusters{methode}_inwoners_evolutie_relatief_{verschil_jaren[0]}_{verschil_jaren[1]}.tif")

 evolutiekaarten(f"clusters{methode}_huishoudens{verschil_jaren[0]}_per_ha.tif",
 f"clusters{methode}_huishoudens{verschil_jaren[1]}_per_ha.tif",
 f"clusters{methode}_huishoudens_evolutie_relatief_{verschil_jaren[0]}_{verschil_jaren[1]}.tif")

 gemiddelde_leeftijd(verkavelingswijken_cluster_tif, rf"E:\Landgebruikskaart_{jaar}\Indicatoren\Inwoners\inwoners_{jaar}_10m_verbeterd.tif",
 f"clusters_{methode}_gemiddelde_leeftijd_{jaar}.tif") ## gemiddelde leeftijd inwoners (op basis van data voor stat. sectoren)

 leeftijd_per_10_jaar(verkavelingswijken_cluster_tif,
 rf"E:\Landgebruikskaart_{jaar}\Indicatoren\Inwoners\inwoners_{jaar}_10m_verbeterd.tif") ## aandeel inwoners per leeftijdsgroep van 10 jaar

 ## Excel met data per cluster, gebruik makend van hierboven weggeschreven (gemiddelde) rasterdata per cluster
 aanwezig_in_cluster(verkavelingswijken_cluster_tif, f"clusters{methode}_opp_ha.tif", 'opp_ha', output_excel, False)
 aanwezig_in_cluster(verkavelingswijken_cluster_tif, f"won_6789_clusters{methode}_verkavelingsaanvragen_gem_{jaar}.tif", 'a_verkavel', output_excel)
 aanwezig_in_cluster(verkavelingswijken_cluster_tif, f"won_6789_clusters{methode}_bpa_gem_{jaar}.tif", 'a_bpa', output_excel)
 aanwezig_in_cluster(verkavelingswijken_cluster_tif, f"won_6789_clusters{methode}_rup_gem_{jaar}.tif", 'a_rup', output_excel)
 aanwezig_in_cluster(verkavelingswijken_cluster_tif, f"won_6789_clusters{methode}_paars_gem_{jaar}.tif", 'a_paars', output_excel)
 aanwezig_in_cluster(verkavelingswijken_cluster_tif, f"won_6789_clusters{methode}_kansRRgem_{jaar}.tif", 'gem_rr', output_excel)
 aanwezig_in_cluster(verkavelingswijken_cluster_tif, f"won_6789_clusters{methode}_kansRRmediaan_{jaar}.tif", 'med_rr', output_excel)
 for stats_jaar in stats_jaar_list:
 aanwezig_in_cluster(verkavelingswijken_cluster_tif, f"clusters{methode}_inwoners{stats_jaar}_som.tif", f'inw_{stats_jaar[-2:]}', output_excel)
 aanwezig_in_cluster(verkavelingswijken_cluster_tif, f"clusters{methode}_inwoners{stats_jaar}_per_ha.tif", f'inw_{stats_jaar[-2:]}_ha', output_excel)
 aanwezig_in_cluster(verkavelingswijken_cluster_tif, f"clusters{methode}_huishoudens{stats_jaar}_som.tif", f'hh_{stats_jaar[-2:]}', output_excel)
 aanwezig_in_cluster(verkavelingswijken_cluster_tif, f"clusters{methode}_huishoudens{stats_jaar}_per_ha.tif", f'hh_{stats_jaar[-2:]}_ha', output_excel)
 aanwezig_in_cluster(verkavelingswijken_cluster_tif, f"clusters{methode}_aantal_huizen{jaar}_som.tif", 'huizen', output_excel)
 aanwezig_in_cluster(verkavelingswijken_cluster_tif, f"clusters{methode}_aantal_huizen{jaar}_per_ha.tif", 'huizen_ha', output_excel)
 aanwezig_in_cluster(verkavelingswijken_cluster_tif, f"clusters{methode}_aantal_app{jaar}_som.tif", 'app', output_excel)
 aanwezig_in_cluster(verkavelingswijken_cluster_tif, f"clusters{methode}_aantal_app{jaar}_per_ha.tif", 'app_ha', output_excel)
 aanwezig_in_cluster(verkavelingswijken_cluster_tif, f"clusters{methode}_aantal_wooneenheden{jaar}_som.tif", 'won', output_excel)
 aanwezig_in_cluster(verkavelingswijken_cluster_tif, f"clusters{methode}_aantal_wooneenheden{jaar}_per_ha.tif", 'won_ha', output_excel)
 aanwezig_in_cluster(verkavelingswijken_cluster_tif, f"clusters{methode}_bouwjaar{jaar}.tif", 'gem_bouwjr', output_excel)
 aanwezig_in_cluster(verkavelingswijken_cluster_tif, f"clusters{methode}_aandeel_huizen_ouder_dan_50.tif", 'a_bouw_oud', output_excel)
 for i in range(5,10):
 aanwezig_in_cluster(verkavelingswijken_cluster_tif, f"clusters{methode}_aandeel_huizen_jaren_{i}0.tif", f'a_bouw_{i}0', output_excel)
 aanwezig_in_cluster(verkavelingswijken_cluster_tif, f"clusters{methode}_aandeel_huizen_21ste_eeuw.tif", 'a_bouw21_e', output_excel)
 aanwezig_in_cluster(verkavelingswijken_cluster_tif, f"clusters{methode}_aandeel_renovatie_21ste_eeuw.tif", 'a_reno21_e', output_excel)
 aanwezig_in_cluster(verkavelingswijken_cluster_tif, f"clusters_{methode}_gemiddelde_leeftijd_{jaar}.tif", 'g_leeftijd', output_excel)
 aanwezig_in_cluster(verkavelingswijken_cluster_tif, f"clusters{methode}_ruimtebeslag{jaar}.tif", 'a_rbslg', output_excel)
 aanwezig_in_cluster(verkavelingswijken_cluster_tif, f"clusters{methode}_verharding{jaar}.tif", 'p_verhard', output_excel)
 aanwezig_in_cluster(verkavelingswijken_cluster_tif, f"clusters{methode}_perceelsgrootte{jaar}.tif", 'perceel_m2', output_excel)
 for i,a in enumerate(leeftijd_array):
 if i % 2 == 0:
 if i == 0:
 aanwezig_in_cluster(verkavelingswijken_cluster_tif, f"clusters_{methode}_perc_leeftijd_{jaar}_0_9.tif", 'pl_0_9', output_excel)
 else:
 aanwezig_in_cluster(verkavelingswijken_cluster_tif,
 f"clusters_{methode}_perc_leeftijd_{jaar}_{a[:2]}_{leeftijd_array[i+1][3:]}.tif",
 f'pl_{a[:2]}_{leeftijd_array[i+1][3:]}', output_excel)
 aanwezig_in_cluster(verkavelingswijken_cluster_tif, f"clusters{methode}_bt{jaar}.tif", 'bt_cadgis', output_excel)
 aanwezig_in_cluster(verkavelingswijken_cluster_tif, f"clusters{methode}_vt{jaar}.tif", 'vt_cadgis', output_excel)
 aanwezig_in_cluster(verkavelingswijken_cluster_tif, f"clusters{methode}_aantal_huizen_sociaal{jaar}_som.tif", 'soc_huizen', output_excel)
 aanwezig_in_cluster(verkavelingswijken_cluster_tif, f"clusters{methode}_aantal_app_sociaal{jaar}_som.tif", 'soc_app', output_excel)
 aanwezig_in_cluster(verkavelingswijken_cluster_tif, f"clusters{methode}_aantal_wooneenheden_sociaal{jaar}_som.tif", 'soc_won', output_excel)
 os.system(f'transpose {output_excel} > {output_excel_transpose}')

 ## clusters met matig ruimtelijk rendement (>0, <=50) en hoog ruimtelijk rendement (>50) selecteren
 goed_gelegen_rr(verkavelingswijken_cluster_tif, f"won_6789_clusters{methode}_kansRRmediaan_{jaar}.tif", 0, 50, f"won_6789_clusters{methode}_RR_boven_0_tot_50.tif")
 goed_gelegen_rr(verkavelingswijken_cluster_tif, f"won_6789_clusters{methode}_kansRRmediaan_{jaar}.tif", 50, 200, f"won_6789_clusters{methode}_RR_boven_50.tif")

 ## berekenen van gemiddelden Vlaanderen (voor overal in VL - dus ook buiten clusters; voor alle clusters; voor matige clusters; voor goede clusters)
 ## gemiddelden voor alle clusters worden hieronder ook terug berekend (voor het overzicht)
 ## --> is wel dubbelop met hogerop in het script waar de gemiddelde rasterkaarten al berekend zijn
 for clusters_tif in [VL10_tif, verkavelingswijken_cluster_tif, f"won_6789_clusters{methode}_RR_boven_0_tot_50.tif", f"won_6789_clusters{methode}_RR_boven_50.tif"]:
 print(f"Stats voor {clusters_tif}")
 statistieken_per_cluster(clusters_tif, VL10_tif, som_tif=f"clusters{methode}_opp_ha.tif", som_factor=0.01, write_tifs=False)
 statistieken_per_cluster(clusters_tif, f"paars_gebied_{jaar}.tif",
 f"won_6789_clusters{methode}_paars_{jaar}.tif", f"won_6789_clusters{methode}_paars_gem_{jaar}.tif", write_tifs=False)
 statistieken_per_cluster(clusters_tif, "verkavelingsaanvragen.tif", gem_tif=f"won_6789_clusters{methode}_verkavelingsaanvragen_gem_{jaar}.tif", write_tifs=False)
 statistieken_per_cluster(clusters_tif, "bpa.tif", gem_tif=f"won_6789_clusters{methode}_bpa_gem_{jaar}.tif", write_tifs=False)
 statistieken_per_cluster(clusters_tif, "rup.tif", gem_tif=f"won_6789_clusters{methode}_rup_gem_{jaar}.tif", write_tifs=False)
 statistieken_per_cluster(clusters_tif, kansenkaart_tif, f"won_6789_clusters{methode}_kansRR_{jaar}.tif",
 f"won_6789_clusters{methode}_kansRRgem_{jaar}.tif", median_tif=f"won_6789_clusters{methode}_kansRRmediaan_{jaar}.tif", write_tifs=False)
 for stats_jaar in stats_jaar_list:
 inwoners_tif = rf"E:\Landgebruikskaart_{stats_jaar}\Indicatoren\Inwoners\inwoners_{stats_jaar}_10m_verbeterd.tif"
 huishoudens_tif = rf"E:\Landgebruikskaart_{stats_jaar}\Indicatoren\Huishoudens\huishoudens_{stats_jaar}_10m_verbeterd.tif"
 statistieken_per_cluster(clusters_tif, inwoners_tif, gem_tif=f"clusters{methode}_inwoners{stats_jaar}_per_ha.tif",
 som_tif=f"clusters{methode}_inwoners{stats_jaar}_som.tif", per_ha=True, write_tifs=False)
 statistieken_per_cluster(clusters_tif, huishoudens_tif, gem_tif=f"clusters{methode}_huishoudens{stats_jaar}_per_ha.tif",
 som_tif=f"clusters{methode}_huishoudens{stats_jaar}_som.tif", per_ha=True, write_tifs=False)
 statistieken_per_cluster(clusters_tif, f'centroid_aantal_huizen_{jaar}.tif', gem_tif=f"clusters{methode}_aantal_huizen{jaar}_per_ha.tif",
 som_tif=f"clusters{methode}_aantal_huizen{jaar}_som.tif", per_ha=True, write_tifs=False)
 statistieken_per_cluster(clusters_tif, f'centroid_aantal_app_{jaar}.tif', gem_tif=f"clusters{methode}_aantal_app{jaar}_per_ha.tif",
 som_tif=f"clusters{methode}_aantal_app{jaar}_som.tif", per_ha=True, write_tifs=False)
 statistieken_per_cluster(clusters_tif, f'centroid_aantal_wooneenheden_{jaar}.tif',
 gem_tif=f"clusters{methode}_aantal_wooneenheden{jaar}_per_ha.tif",
 som_tif=f"clusters{methode}_aantal_wooneenheden{jaar}_som.tif", per_ha=True, write_tifs=False)
 statistieken_per_cluster(clusters_tif, f'centroid_bouwjaar_{jaar}.tif', gem_tif=f"clusters{methode}_bouwjaar{jaar}.tif", tov_puntdata=True, write_tifs=False)
 statistieken_per_cluster(clusters_tif, "jaarbak_2022_10m.tif", gem_tif=f"clusters{methode}_verharding{jaar}.tif", write_tifs=False)
 statistieken_per_cluster(clusters_tif, ruimtebeslag_tif, gem_tif=f"clusters{methode}_ruimtebeslag{jaar}.tif", write_tifs=False)
 statistieken_per_cluster(clusters_tif, f'centroid_perceelsgrootte_huizen_{jaar}.tif',
 gem_tif=f"clusters{methode}_perceelsgrootte{jaar}.tif", tov_puntdata=True, write_tifs=False)
 statistieken_per_cluster(clusters_tif, 'centroid_huis_oud.tif', gem_tif=f'clusters{methode}_aandeel_huizen_ouder_dan_50.tif',
 gem_tov_puntlaag="centroid_huis.tif", write_tifs=False)
 for i in range(5, 10):
 statistieken_per_cluster(clusters_tif, f'centroid_huis_{i}0.tif', gem_tif=f'clusters{methode}_aandeel_huizen_jaren_{i}0.tif',
 gem_tov_puntlaag="centroid_huis.tif", write_tifs=False)
 statistieken_per_cluster(clusters_tif, 'centroid_huis_21ste_eeuw.tif', gem_tif=f'clusters{methode}_aandeel_huizen_21ste_eeuw.tif',
 gem_tov_puntlaag="centroid_huis.tif", write_tifs=False)
 statistieken_per_cluster(clusters_tif, 'centroid_renovatie_21ste_eeuw.tif', gem_tif=f'clusters{methode}_aandeel_renovatie_21ste_eeuw.tif',
 gem_tov_puntlaag="centroid_huis.tif", write_tifs=False)
 statistieken_per_cluster(clusters_tif, f'centroid_bt{jaar}.tif', gem_tif=f"clusters{methode}_bt{jaar}.tif", gem_tov_puntlaag="centroid_huis.tif", write_tifs=False)
 statistieken_per_cluster(clusters_tif, f'centroid_vt{jaar}.tif', gem_tif=f"clusters{methode}_vt{jaar}.tif", gem_tov_puntlaag="centroid_huis.tif", write_tifs=False)

 ## manuele stap
 ## Excel in output_excel_transpose nog manueel om te zetten naar xlsx (gebruik zelfde naam, maar dan extentie xlsx)
 ## Er is ook een verkavelingswijk manueel geschrapt die bestond uit een aantal stallen in Ichtegem zonder inwoners (ID 883) die toch aan de voorwaarden voldoet

 ## afronding en wegschrijven van geopackages
 opkuis_excel(f'{output_excel_transpose[:-4]}.xlsx', f"verkavelingswijken_{jaar}_statistieken_per_cluster.xlsx")
 maak_gpkg(f"won_6789_clusters_id{methode}_{jaar}.shp", f"verkavelingswijken_{jaar}_statistieken_per_cluster.xlsx",
 f"verkavelingswijken_{jaar}_v{versie}_statistieken_per_cluster.gpkg")
 goed_gelegen_gpkg(f"verkavelingswijken_{jaar}_v{versie}_statistieken_per_cluster.gpkg", f"goed_gelegen_verkavelingswijken_{jaar}_v{versie}.gpkg")

 ## manuele stap
 ## voorlopig manueel gemaakt: f"verkavelingswijken_{jaar}_statistieken_per_cluster_sociaal.xlsx"
 ## met sociale woonvelden (die hierboven berekend zijn), en met ratio tov alle woningen berekend in excel

 ## wegschrijven van geopackages
 maak_gpkg(f"won_6789_clusters_id{methode}_{jaar}.shp", f"verkavelingswijken_{jaar}_statistieken_per_cluster_sociaal.xlsx",
 f"verkavelingswijken_{jaar}_v{versie}_statistieken_per_cluster_sociaal.gpkg")
 goed_gelegen_gpkg(f"verkavelingswijken_{jaar}_v{versie}_statistieken_per_cluster_sociaal.gpkg",
 f"goed_gelegen_verkavelingswijken_{jaar}_statistieken_per_cluster_met_extra_woningen.xlsx",
 f"goed_gelegen_verkavelingswijken_{jaar}_v{output_versie}_sociaal.gpkg")

 ## naar gemeentelijke statistieken
 engine = create_engine(f"postgresql://{DB['user']}:{DB['pw']}@{DB['server']}/{DB['db']}")
 conn = psycopg2.connect(f"dbname={DB['db']} host={DB['server']} user={DB['user']} password={DB['pw']}")
 conn.set_session(autocommit=True)
 conn.set_isolation_level(psycopg2.extensions.ISOLATION_LEVEL_AUTOCOMMIT)
 per_gemeente(conn, f"goed_gelegen_verkavelingswijken_{jaar}_v{output_versie}_sociaal.gpkg", f"goed_gelegen_verkavelingswijken_{jaar}_gemeente_v{output_versie}.xlsx")

